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We consider a kinetic theory model of a gas, whose molecular velocities are 
restricted to a set of fourteen given vectors. For this model we study the Couette 
flow problem, the boundary conditions on the walls being the conditions of pure 
diffuse reflexion. The kinetic equations can be integrated by quadrature under 
the assumption that the walls have opposite velocities and equal temperatures. 
The presence on the walls of tangential velocities leads to the consequence that 
the velocity slip coefficient does not in general vanish when the Knudsea number 
goes to zero. 

Considering the same problem again after the suppression of tangential velo- 
cities, we obtain formulae for the velocity and temperature slip coefficients 
which generalize results of Broadwell (1964b), and which agree qualitatively 
with experiments. 

1. Introduction 
The study of flow in the kinetic theory of gases is a difficult problem which can 

be successfully treated only if one first replaces the Boltzmann equation by a 
model equation. Among the methods proposed to simplify the Boltzmann 
equation is the method of discretization of velocity space, as first suggested by 
Maxwell. This method consists of assuming that the molecules of the gas can have 
only certain discrete velocities chosen from a given set of p vectors. The Boltz- 
mann equation is then replaced by a system of p quasi-linear partial differential 
equations. For different models, various particular problems have been solved: 
the structure of shock waves by Broadwell (1964a) and Gatignol(1975a, b) ,  the 
Couette flow problem and Rayleigh problem by Broadwell (1964b), the approach 
to equilibrium by Harris (1966), thermodynamics and hydrodynamics for a model 
with four velocities by Hardy & Pomeau (1972). In  all these studies except that 
of Harris, the velocities of molecules all have the same modulus; as a consequence 
the temperature is not a macroscopic independent variable, for it can be expressed 
as a function of the mean velocity. In  particular the Couette flow problem 
studied by Broadwell concerns a gas with eight velocities, obtained by joining 
the centre of a cube to the vertices; the centre of the cube is at the origin of the 
velocity space, and the walls which bound the fluid are parallel to  one of the faces 
of the cube. The simplest three-dimensional regular model in which the velocities 
do not have the same modulus is the model with fourteen velocities obtained by 
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adding to these eight velocities six new vectors joining the centre of the cube to 
the centre of the faces (Cabannes 1975). The subject of this paper is first to 
consider the Couette flow problem on the basis of this model; this new study 
reveals the influence of the temperature on the different quantities and on the 
different parameters which characterize the flow; the study of the fractional 
slip velocity, in particular, leads for certain temperatures to negative values, and 
further this coefficient does not in general go to zero when the Knudsen number 
goes to zero (the continuous flow limit). These two paradoxical results are due 
to the existence of velocities parallel to the walls, whereas in reality such velocities 
constitute a set of zero measure. The paradoxes disappear if we remove the four 
velocities tangential to the walls, as is (non-trivially) possible, for after this 
removal there still exist mixed collisions, i.e. collisions between molecules having 
velocities of different moduli. In  6 5 we consider the Couette flow problem on the 
basis of this model with ten velocities and obtain results which are in qualitative 
agreement with experiments. 

2. Equations of the problem 

components in the directions Ox, Oy, Oz of a Cartesian system are (figure 1) 
The velocities are denoted by ui (i = 1, ..., 8) and v, (j  = 1, ..., 6) ,  and their 

u , = c ( - l , l , l )  u 2 = c ( 1 , 1 , 1 ) ,  u 3 = c ( - 1 , - - 1 , 1 ) ,  u 4 = c ( 1 , - l , 1 ) ,  

v, = c( l ,O,O),  v2 = c(0, LO), v, = c ( O , O ,  1) 

lull = 34c. 

and ~ 9 - i  = -ui (i = 1 ,2 ,3 ,4 ) ,  vj+3 = -v,j (j = 1,2 ,3) ,  

the moduli being given by 

The number density of molecules with velocity ui is denoted by Ni, that of 
molecules with velocity v i  by M,. The kinetic equations as derived in an earlier 
paper (Cabannes 1975) are then 

lvjl = c, 

aN, aNl aiv, aN, 
at ax ay az 
-- c - + c - + c - = 4 x 3fcS(N2 N7 + N3 N6 + N4 N5 - 3N1 Ns) 

+ 23c S(N, N3 + N3N5 + N5 N, - N, N4 - N, N6 - N, N,) 

+ 4 x 6 k  S(N2 M4 + N,M, + N5 M3 - N, N, - N, M5 - N, H6), (1)  

ax, aiv, -+c -  = 2 ~ c S ( M ~ M ~ + M ~ M ~ - ~ M , M ~ ) + *  x 6*cS(N2M4 
at ax 

+ N4 M4 + N6 M4 + NSM4 - N1 MI - N3lCI1- N5 $11 - N7 M,) ( 2 )  

together with seven equations similar to ( 1 )  and five equations similar to ( 2 )  
obtained in an obvious way by permutation of suffixes. In  these equations S is a 
constant representing the collision cross-section. These equations, fourteen in all, 
are satisfied, in kinetic theory, by the motions of a gas with fourteen velocities. 
When we assume (as we shall now do) that the distribution of velocities is sym- 
metric with respect the Oxy plane, the number of unknowns and of equations is 
reduced to nine; the unknowns are the densities Ni (i  = I, 2 , 3 , 4 )  and the densities 
M, (j = 1, . . . , 6 )  except M6, which is equal to M,. 
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FIGURE 1. Model with fourteen velocities. 

The Couette flow problem consists of determining the steady flow between two 
plane parallel walls y = ? d moving with constant velocities ( -  U,, 0, 0) and 
( + U,, 0, 0) ,  where U, > 0, and having the same constant temperature T,. By 
analogy with the classical Couette flow problem we shall look for (and obtain) a 
solution of the problem under the assumption that the unknown functions (i.e. 
the densities) depend only on the variable y. The equations then take the form 

dNl/dy = (2f+39)S(N2N,-N,N,)+Qx 6*S(N,M4+N3M2-N,Ml-N,M5), (3a) 

dN2/dy = (2* + 34)S(N1N4 - NsN3) + Q x 6*S(M1 Nl + N4 M2 - N22M4- N2 Mb), 
d N 3 / d ~  = (29 + 39) S(N2 N3 - Nl N4) + 4 x 6*S(N3M1 + N3M2 - Nl M5 - N4 M4), 

(3b)  

(3  C) 

dNJdy = (2$+ 34)S(NlN4-N2NX) + 4 x 6*S(N41M2+N4M4-N22M,-N3Ml), (3d)  
0 = +S(MzM5 + M l -  2M1M4) + 648(N2M4 + N4M4 -NIIM, - N3Ml),  (3  e )  

dM2 -- - $8(Ml M4 + &!: - 2M2M5) + 64X(N1 M5 + N2M5 - N3M2 -N,M2), (3  f )  

(39)  
dY 

0 = $X(Ml M4 + M2 M5 - 2Mi) ,  
0 = gS(M2 M5 + Mg - 2M1M4) + ~*AS'(N'J~~ + N3Ml - N2 M4 - N4M4), (3h)  

g5 = $8(2M2 M5 - Jfl M4 - M i )  + 63S(N1 M5 + N2 M5 - N3M2 - N4 M2). (3  i) 
dY 

Equations (3e-i) can be replaced by the following: 

(4) 

18-2 

i 
Mllcf4 = M2M5 = ill:, 

(4 + N3) Ml = w 2  + N4) M4, 
dM2/d~  = 64X(N1 M, + N2 M5 - N3 M2 - N4 M2), 

M5-2M2 = H (constant). 
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FIGURE 2. Couette flow. 

From (4 )  and (3 a-d) we deduce 

Nl - N3 = Kl (constant), 

N,- N4 = K ,  (constant). (5) 

The sum c{2(N1 + N2 - N3 - N4) + N, - M5} has the constant value 

4Wl + K,)  -4 
and represents the flux in the y directi0n.t The boundary conditions imply that 
this flux is zero on the walls and therefore zero everywhere, and we have 
H = 2(K ,  + K Z ) .  This relation between the constants leads to 

( 6 )  1 dM,/dy = 64SH (N1+ N2 + @&}, 
2(dN1/dy + dN,/dy) = - 6&SH{N1 + N, + +N2}. 

By addition we obtain a new first integral 

2(N1+N,) +M, = 2K (constant), (7 )  

or 2(N3+N4)+M5 = 2K.  (7') 

(8) 

or M,(y) = M5(0) + 2 x 6JSHKy.  (8') 

The derivative dM,/dy has the constant value 2 x 64SHK, and we can write 

M,(Y) = M2(0) + 2 x 64SHKy, 

Finally, the integration of system (3) is reduced to the study of a single differential 
equation: 

dNl/dy = (24 +34) S(N, N3- Nl N4) + & x 6*S(N2 M4 + N3M2 - Nl ill, - N1 M5). (9) 

t This result is general, for if the densities depend only on the variable = ax +by + yz 
(u, p and y being the components of a unit vector v), the flux x Ni ui .v  through a surface 

i normal to v has as derivative 

Z(dN,/dS)u, .V  = C(aN,/at +u,. V N i ) ,  

which is equal, by virtue of the kinetic equations, to the sum of all the collision terms; 
this sum is evidently zero, since to every collision there corresponds an inverse collision. 

i i 
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The second term is a function of N, and y only. When the constant H i s  zero, i.e. 
when Jf2(O) = M5(0),  the densities M2 and M5 have equal constant values and the 
integration of the differential equation (9) is reduced to a quadrature: 

dNl/dy = (2*+3f)S(K-4M2) (N3-Nl) 

+$x 64fiM2(N3-N,){1+ ( K - i M 2 )  (N1+N3)-*(N,+N4)-*) (10) 

with Nl+N3 = N3(0)-Nl(O) +2N,, 

N2+N4 = N4(0)-N2(O) +2N2 = N,(0)-N3(O) +2K-M2-2N1.  

3. Calculation of densities 
To compute the integral defined by (lo),  we introduce the non-dimensional 

quantities 
n,  = N i / K ,  mi = Mi/K, ij = + x 64SKy, 

and we put 0 = 24 +2/34. The values of the non-dimensional densities for ij = 0 
are denoted by Ti i  and mi. With the assumptions made above, all straight lines 
with equations x = constant, y = 0 are axes of symmetry for the flow, so that we 
have 

in particular, E3 = E2 and Z4 = ?i,, so that 

(13) 
- 
n,+?i3+3?iz2 = 1. 

All the densities are expressed in terms of the density n, by the formulae: 

n2 = iT3-(ni-Tii), n3 = ?i3+(nl-51), n4 = ?il-(nl-TiJ, 

m2 = in5 = m3 = m6 = m2 = 2(1--?i1-?i3), 

m1= m2(n2 + n,)t (nl + n3)-+, 

1 (14 )  
- 

m4 = m2(n1 +n3)* (n2 +n,)-I. 

These densities are all positive provided 

n,+E3 < 1, (15) 
- 

0 6 n, 6 25,. 

The constant Fi, must be greater than zero, which corresponds t o  the model with 
eight velocities considered by Broadwell, and smaller than 2, which corresponds 
to  the model with six velocities. Equation (10) can be written as 

dn,/dy" = O(E3 + Ti,) (?i3 - ?il) 
+?iz2(?i3-Ti1){1 + (n,+n,)-J(n,+n,)-f), (16) 

which may be integrated in the form 

where 

sing5 = 4(n1-Ti1)(2-E2)-1, Q! = 1+2(3x 2 i - 2 ~  34)H2(2--5E2)-l. (18) 

The product (Ti3 - Til) y" depends uniquely on the variable n, - ?il and on the 
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FIGURE 3. Values of the function n l ( j ) .  

parameter m,. The function n, - ‘iz, is represented in figure 3. Form, = 0, we have 
again the model with eight velocities, for which the function nl(y”) is linear. The 
maximum of y” is reached for q5 = ir. 

When the densities have been computed, we can obtain the values of the macro- 
scopic variables, i.e. the total number density n, the mean velocity u (with com- 
ponents u, ZI, w) and the temperature T.  The density n can be obtained explicitly, 
in the symmetrical case ( H  = O ) ,  by noticing that the densities m,, m3 and m5 
all have the same constant value E, = 2( 1 --El - ?i3). We then have 

m, = m2(n2 + n4)t(n1 + n3)-4 m4 = E2(nl + n,)+ (n, + n4)-+ 

n,+n3 = 1-1- 2m2+2(nl-?il), n,+n, = 1-4F?i2-2(n1-’iz1), } (19) 

and n = 8- (2-F?i2){2-E2(n,+n3)-~(n,+n4)-~).  (20) 

The mean velocity is calculated from the flux 
8 fi 

nu = I: niuii- C mjvj,  
i= 1 i= 1 

I giving nu = - 4c(n1 - 5,) (2  + F?i2(nl + n3)-t (n, + n4)-9}, 
nu = nw = 0. 
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Finally, denoting by ,u the massof molecules and by k the Boltzmann constant, 
we obtain the expression for the temperature, 

and so kT = gpc2{l - ( ~ / ~ ) ~ + 4 n - ~ ( 2 - % , ) } .  ( 2 2 )  

When the gas is at rest in a Maxwellian state, we have n = 4( 1 +E2)  and 
(1 + E,) kT = pc2; the temperature then lies between the extreme values 

T, = &k1pc2 for m, = 2 (gas with six velocities), 

TIcl = k-lpc2 for %, = 0 (gas with eight velocities). 

Note that 

The macroscopic variables depend on the parameter E, and on the variable 
n, -Ti,. 

T /q l  = +{ 1 - ( u / c ) ~  + 4n-l(2 - a,)}. (23) 

4. Determination of the flow 
The solution of the kinetic equations given in the previous section depends on 

four parameters: Zl, Z,, %, and K.  The parameter K is proportional to the density 
No a t  rest, for we have 

8 G 

i= l  j = 1  
No = C N,+ I; .Mi = 4K(1+E2),  (24) 

a formula which gives K when %, is known. 

bounda,ry conditions on the walls (y = 

To determine the other three parameters, it is appropriate to  write down the 

(25) 

where K ,  = (SN0d)-1 (26) 

d) ,  on which we have 

y” = & y ” ,  = x 6BSKd = -t. Q x 63K,l(l +%&’, 

is the Knudsen number. We shall adopt as boundary conditions on the walls the 
laws of diffuse reflexion. The molecules reflected by the lower wall (y = - d )  are 
those whose y component of velocity is positive, i.e. those with velocities u,, u,, 
u,, u6 and v,. The molecules reflected by the upper wall (y = d)  are those whose 
y component of velocity is negative, i.e. those with velocities us, u4, u,, us and 
v5. 

The laws of diffuse reflexion state first that on each wall the projection on the 
wall of the mean velocity of the reflected molecules is equal to the velocity of the 
wall. We denote by n+ the density of the molecules reflected by the lower wall, 
by U+ (components u+, vf, w+) their mean velocity, and by n- the density of the 
molecules reflected by the upper wall and by u- (components ir, v-, v-) their 
mean velocity. We have then 

n+ = 2(n1+n , ) +m, = 2, n- = 2(n3+n,)+m5 = 2 ( 2 7 )  

(28) 
and n+ u+ = n, u, + n2 u2 + n, u5 + n6 u6 + m2 V,, 

n- u- = n3 u, +n, u4 + n7 u7 + nsus + m5 v5 
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and therefore 

u+ = c(n2 - n,) = c( 1 - @i, - Zn,), vf = c,  w+ = 0, 

v- = - c ,  u- = c(n4-n3) = -c{1-+%2-2 (2-1 n - f a , ) } ,  w- = 0. 

The boundary conditions then give 

u+/c = 1-&5i2-2n1 fory = -d ,  (30a) 

(30b) { -u-lc = 1 - @ ~ ~ - 2 ( 2 ? % , - n , )  fory = d. 
uw/c = 

The laws of diffuse reflexion next state that on each wall the temperature of 
the reflected molecules, defined by regarding the velocity of the wall as the mean 
velocity, is equal to the temperature of the wall; this gives on the lower and upper 
walls respectively 

) ( 3 1 )  
kn+Tw = 4,u {2n,(u1 - Uw)2 + 2n,(u2 - UJ2 + m2(vz - U,)2), 

kn-T, = 4,u {2n3(u3 + Uw)2 + 2n4(u4 + CLJ2 + wg5(v5 + U,)”, 

or Tu,/TJI = * (1 - ( UW/C)2 + 2 - m3. 
The boundary conditions on the walls thus determine E2, 

(32) 
- 
m2 = 3 - 3Tw/TTf - ( Uw/c)2, 

and also the (equal) values of n1 on the lower wall and 2E1 - n, on the upper wall: 

As the velocity Uw is assumed positive, we have 

0 6 (nl)y=-d 6 4(2- . i2) ,  0 6 ( 2 ~ , - n , ) , = ~  6 4(2-%,).  (34) 

In  figure 4 we show on the plane with Uw/c as abscissa and Tw/TiI as ordinate 
the curves on which E, = constant and the curves (dotted) on which (nl)y=-d 
(or (2E,-  f a l ) y = d )  = constant. The fact that these quantities are positive leads to 
the inequalities 

which can be satisfied only if the velocity of the walls is less than c .  

2, and Ti3, which satisfy the relation 

(35) 2 - (1  - uw/C)z < 3T,/TM 6 3 - ( Uw/C),, 

To complete the determination of the flow, we must still obtain the parameters 

2(E ,+E3)  = 3TW/&+ (UW/c),- 1. 

When those parameters are known, we know by virtue of (30a) the value of 
n, - El on the lower wall (y = - d) ,  and the formula (17)  gives the value - gw of 
on the wall. As we have also 

ijw = +& x 6gXKd = & x GhSN,d(l+ E2)-’, (36) 

we deduce the value of the Knudsen number K,  as a function of Uu,/c, and 
rL1; this is given in table 1. As, in practice, the Knudsen number is given, table 1 
(by interpolation) and the formulae (30) entirely determine the flow. An example 
corresponding to TWIT, = Q and U,/c  = 0.8 and to three values of the Knudsen 
number is shown in figure 5. For K ,  = 0, it is quite clear that the velocity 

- 
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FIGURE 4. Curves E, = constant (solid lines) and (v&,--~ = constant 
(dotted lines). 
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FIGURE 5. Velocity profiles (model with fourteen velocities). 
TJT, = 8, U W / c  = 0.8. 
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%-n1 3 

0.00 
0.0 1 
0.02 
0.03 
0.03 

0.05 
0.06 
0.07 
0.08 
0.09 

0.10 

0.00 
0.02 
0.04 
0.06 
0.08 

0.10 
0.12 
0.14 
0.16 
0.18 

0.20 

0.00 
0.03 
0.06 
0.09 
0.12 

0.15 
0.18 
0.21 
0.24 
0.27 

0-30 

0.00 
0.04 
0.08 
0.12 
0.16 

0.20 
0-24 
0.28 
0.32 
0.36 

0.40 

co 
9.156 
4.070 
2.375 
1.528 

1.019 
0.680 
0.438 
0.256 
0.114 

0.000 

00 

9.497 
4.224 
2.466 
1,588 

1.061 
0.7 09 
0.457 
0.268 
0.120 

0.000 

co 
10.175 
4,526 
2-644 
1.703 

1.139 
0.762 
0.492 
0.289 
0.130 

0.000 

co 
11.457 
5.095 
2.975 
1.916 

1.280 
0.856 
0.552 
0.324 
0.145 

0.000 

0.733 

co 
9.748 
4.333 
2.528 
1.626 

1.084 
0.723 
0.465 
0.272 
0.121 

0.000 

a, 

10.173 
4.523 
2.640 
1.699 

1.134 
0.757 
0.488 
0.285 
0.127 

0~000 

00 

11.039 
4.908 
2.865 
1.844 

1.231 
0.822 
0.530 
0.310 
0.138 

0.000 

co 
124'50 
5.668 
3.308 
2.128 

1.419 
0-947 
0.610 
0.356 
0.159 

o*ooo 

0.786 0.833 0.830 0.933 

u w / c  = 0.2 

00 

10.940 
4.863 
2.837 
1.824 

1.216 
0.81 1 
0.521 
0.304 
0.135 

0.000 

U,jc = 0.4 

co 
11-567 
5.142 
3.000 
1.929 

1.287 
0.858 
0.552 
0.322 
0.143 

00 

12.749 
5.666 
3.306 
2.125 

1.417 
0.945 
0.607 
0.354 
0.157 

0.000 

co 
13.765 
6.118 
3.569 
2.294 

1.530 
1.020 
0.656 
0.382 
0.170 

0.000 0.000 

Uw/c = 0.6 

co 00 

12.904 14.158 
5.736 6.293 
3.347 3.671 
2.152 2.360 

1.435 1.573 
0.957 1.049 
0.616 0.674 
0.359 0.393 
0.160 0.175 

0.000 0.000 

UJC = 0.8 

co 
14.158 
6.293 
3.671 
2.360 

1.573 
1-049 
0.674 
0.393 
0.175 

0.000 

TABLE 1. Rnudsen number 

0.946 0.986 

00 

14,158 
6.293 
3.671 
2.360 

1.573 
1.049 
0.674 
0.393 
0.175 

0.000 

00 

14.158 
6.293 
3.67 1 
2.360 

1.573 
1.049 
0.674 
0.393 
0.175 

o*ooo 
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FIGURE 6. Temperature slip coefficient (Broadwell gas). 

profile is curved; this is an improvement on the Broadwell model (with eight 
velocities), for which the velocity profile had the linear form 

u/u, = - (yp) (1 + 2K,(2t +33)-1)-1, (37) 

and the temperature profile has the parabolic form 

TIT,, = 1 - Q ( u / c ) ~ .  

A particular point of interest in the solution of the Couette flow problem is the 
study of slip coefficients, corresponding to slip of velocity and temperature. In  
the case of a Broadwell gas, we obtain for those two coefficients the expressions 

a = (U, - U,)/U, = 1 - (1 + 2K,(24 + 34)-1)-1 (39) 

and /3 = (T,-T,)/T, = ~ - ( ~ - Q ( U , / C ) ~ ) / ( ~ - ~ ( U , / C ) ~ ) .  (40) 

U, and T, denote respectively the velocity and the temperature of the fluid on 
the wall. The coefficient a depends only on the Knudsen number; the coefficient 
p depends on the Knudsen number and on the ratio Uw/c; its values are indicated 
in figure 6. In  the model with fourteen velocities the two slip coefficients a and p 
depend on the three parameters UJc, Tu,/Tlf and K,. The coefficient of slip velo- 
city is represented in figure 7 (a)  for TW/rrh, = 3 and in figure 7 ( b )  for T, /T , ,  = 0.8.  
For all values of T, other than $T,f the velocity slip coefficient does not go to 
zero in the continuous flow limit K,+ 0. This result, in contradiction with experi- 
ments, is due to  the velocities v,, v,, v4 and v,, which are tangential to the wall 
(while in reality velocities tangential to the wall constitute a set of measure zero). 

5. Model with ten velocities 
It is possible to remove the four velocities tangential to the wall, for if we 

assume that the molecules can have as velocity only one of the vectors u i  and 
one of the vectors v, or v5, we obtain a model with ten velocities, which allows 
of course the same collisions as before between the molecules of velocity ui and 
also the four mixed collisions 

(u3 v2) * (Ul> VEJ, (UP v2) - (u5, v5), 

(u4, v2) - (UP v5), (U8, v2) 4-+ (UB, v5). 
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FIGURE 7 .  Velocity slip coefficient for (a )  Tw = Qk-lpc2 and 
( b )  Tu, = %Ii-'pcZ (model with fourteen velocities). 

Assuming always that the densities depend only on y ,  and that Ni+4 = Ni,  the 
kinetic equations must now be replaced by 

dN2/dy = dN,/dy = (24+39)S(N1N4-N2N3) +&x6&S(N4M2-N,M5),  

dlM,/dy = dM5/dy = 6:s ((XI + NZ) M5 - (N3 + N4) MZ}. 

(41) I dN&y = dN3/dy = (24 + 39) S(N2 N3 - Nl N4) + & x 64 S(N3M2 - Nl M5), 

The difference M5 - M, is a constant, zero when the two walls are at the same 
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temperature T,, as we shall suppose. With the same notation as in $ 3 ,  (41) can be 
integrated to  give 

(42) I n, = %,+a@, n, = ?i,+uij, 

n2 = Z3 - ag, n, = n, - ay", - 

a = {G2+ (2-E2)(2*+3t)/6*}(?i3-?Z1), 

where E2 has the constant value EE = 2(1 -El-?i3). The macroscopic variables 
can be expressed in the simple forms 

8 

i= l  
n = 2 Ni + M2 +M5 = 4K 

u = --cay", v = w = 0 (velocity), 

(density), j (43) 

k T = l  ,,uc 2 { 1 - (u/c) ,  + 2 - %2} (temperature). 

The boundary conditions on the walls are 

u, = c {Til - n, - 2agw), 

kTw = $pc2 { 1 - ( U , / C ) ~  + 2 - Z2}, 

ijw = + x 64Kk1. 

We deduce the values of the velocity and temperature slip coefficients 

(44) 

(Uw- Up)/Uw = 1-{1+[a(2*+3t)+6(6t-3t-2t)~i;i,]-1)-1, (45) 

(46) and 

The velocity slip coefficient is shown in figure 8. This coefficient, always positive, 
is a decreasing function of the temperature and velocity of the walls and an 
increasing function of the Knudsen number, being zero in the case of continuous 

(qu - Tp)/Tw = 1 - $(3 - E2 - 3a2/8KZ,) TWIT,. 
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FIGURE 9. Temperature slip coefficient for (a) TJT, = 0.8 and 
(b )  TJTM = Q (model with ten velocities). 

flow ( K ,  = 0). The temperature slip coefficient is shown in figure 9(a) for 
T,/T, = 0.8 and in figure 9(b )  for T,/T, = g. This coefficient, always negative, 
is a decreasing function of the Knudsen number, zero in the case of continuous 
flow (K ,  = 0). 

6. Conclusions 
The above results are interesting from several points of view. They allow us t o  

compare for the same physical problem the value of different models with discrete 
velocity distributions. The very simple model of Broadwell led to formulae which 
(from a qualitative point of view) were surprisingly accurate; the introduction 
of velocities of different moduli has, however, allowed the introduction of tem- 
perature as an independent macroscopic variable, and it is noteworthy that the 
model with ten velocities gives better results than the model with fourteen 
velocities, because ofthe absence of velocities parallel to the ‘preferred ’ directions 
of the problem (direction of the walls, direction of the flow). This is probably 
general: the same phenomenon will probably emerge in all problems of kinetic 
theory solved by discretization of velocity space. The different formulae obtained 
for the model with ten velocities lead to  results which are qualitatively in com- 
plete conformity with experimental results as regards both the velocity slip 
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coefficient and the temperature slip coefficient. One may hope that a further 
increase in the number of vectors available to the velocities may lead in the 
future to quantitative conformity also. 
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